I Catching
Computationally Operationalising Narrative Perspective for
Stylometric Analysis

Lisanne M. van Rossum¹,², Joris J. van Zundert¹,³, and
Karina van Dalen-Oskam¹,⁴

¹Huygens Institute, Royal Netherlands Academy of Arts and
Sciences, Amsterdam
²Humanities Faculty, Utrecht University, Utrecht
³Università Ca’ Foscari, Venice
⁴Humanities Faculty, University of Amsterdam, Amsterdam

One of the aims of literary research is to explain different interpretations
and preferences of literary language. Narrative perspective is one of the
many interlinked features associated with literary style. An automated
way to measure a text’s perspective is thus essential for the computational
analysis of a large corpus of literary fiction. However, no such measure of
narrative perspective exists to date. In this paper we explain a first step
in developing such a measure. We take two approaches to operationalise
narrative perspective as a textual predisposition towards either first or
third person perspective. The first measure is based on a baseline ma-
chine learning approach, the second is based on computing the ratio of
combinations of pronouns. The latter approach results in an heuristics
based measure which we call the I-index. Our research demonstrates that
narrative perspective can be predicted with high accuracy. We reflect on
our results to broach the advantages and pitfalls of both methods.

1 Introduction

In computational literary studies, various stylometric methods are applied. To verify
authorship, for instance, or to map stylistic differences between texts, authors, genres,
etc. In the project The Riddle of Literary Quality, stylometry was used to investigate
the concept of literary quality with the main objective to establish which linguistic
features are more prominent in novels that readers rate as highly literary, as opposed
to novels that are rated less high. The project demonstrated the combined importance
of a novel’s textual qualities for its perceived literariness, qualities such as: narrative
structure and plot (Koolen et al. 2020), semantic complexity and lexical originality
(van Cranenburgh 2016), and the work’s embeddedness in social structures such as
genre and author gender (Koolen, 2018). One of these textual qualities is narrative perspective. The corpus used for the Riddle of Literary Quality consisted of 401 novels. In several experiments, in which sets of novels with different ratings on the scale from high to low literariness were compared, pronouns showed up at the top of the lists of preferred words (van Cranenburgh et al., 2019). In order to establish if and how these preferences relate to perceptions of literary quality, it is necessary to find out if their prevalence can be linked to a difference in narrative perspective. We would like to be able to determine if these pronoun preferences are related to prevailing perspective, which we operationalise as being narrated in either first or third person. However, clear computational measures to determine perspective do not exist. In this paper we build on the work done in The Riddle of Literary Quality and take a first step in the process to develop such a formal measure.

2 Theoretical Background

Establishing a rudimentary definition of narrative perspective is important when we want to answer questions such as whether novels with a first person narrator significantly differ in style from novels with a third person narrator, and if a text’s narrative perspective correlates with its perceived literariness. Especially when dealing with large size corpora, as in the case of the Riddle of Literary Quality project, we need to be able to establish narrative perspective computationally and reliably. In this paper we present and evaluate a first methodological step to do exactly this.

Narrative perspective is a highly complex and multifaceted narratological concept (Porter-Abbott, 2008, pp.311–12). It depends on many aspects such as narrator voice, narrative time, dialogue, reliability of narrator, and so forth: “[t]o mention only a few factors: one’s position with respect to the perceived object, the angle of the light, the distance, previous knowledge, psychological attitude towards the object – all these things and more affect the picture one forms and passes on to others. Storytelling is one form of such passing on,” Mieke Bal writes in her Introduction to the Theory of Narrative (Bal, 2017, p.133). As non-binary and abstract features, these factors of storytelling currently cannot be easily computationally determined, an issue raised by Luc Herman and Bert Vervaeck in their criticism of positivistic narrative processing: “In striving for the disambiguation typical of the hard sciences, literary narratology might lose its relevance as a tool for the development of interpretations that ideally keep the complexity of a text intact. In any case, empirical narratology turns the narrative and literary dimensions of the text into quantitative data.” (Herman and Vervaeck, 2005, p.105).

In contrast to the sceptical take by Herman and Vervaeck we do think it is possible to operationalise literary complexities in a way that enhances the relevance of literary hermeneutics, while remaining respectful of the literary texts themselves. We think that taking small iterative heuristic steps combined with machine learning validation on large ground truths is a feasible way forward. As we will show in the methodology section, these heuristic steps guarantee that the complexity of each literary text is directly taken into account.

In this paper we report on our work to establish if first and third person narrative voice can be reliably determined automatically. Highly accurate formal measures to determine story perspective computationally do not exist yet. Related computational narrative work has focused elsewhere: on dialogue detection (cf. Byszuk et al., 2020), narrative generation (cf. Mani and Hirst, 2013), or matters of authorial perspective (e.g.
Piper, 2015, for instance. Research so far has not yielded results that allow simple and straightforward detection of story perspective, let alone more subtle related aspects such as perspective shift within the same story, chapter or paragraphs, unreliable perspectives, and mixed perspectives. One complicating issue, for instance, is that perspective and its subtle guises are intricately tied to the distinction between dialogue and non-dialogue text that both can take various ambiguous mixed shapes. Acknowledging this complexity Brunner (2013, 2019) combines machine learning and rule based approaches to automatically detect speech, thought and writing representation. Brunner’s method currently does not yield an accuracy of distinguishing dialogue from non-dialogue that enables automated precise labelling of samples. Brunner reports an F1 score of 0.87 on direct speech recognition, and scores lower than 0.5 for other forms of speech and dialogue, e.g. indirect speech, free direct speech and narrator text (Brunner, 2019, p.242). This means that automatic dialogue detection currently cannot help us in detecting narrative perspective and once more demonstrates that inferring narrative perspective while acknowledging the many complexities of literary style is not a straightforward machine learning task. Because machine learning methods that can measure perspective directly are not available we have opted to first tease out the many less complex features and their appropriate computational measures that will ultimately allow us to determine narrative perspective automatically with sufficient accuracy. As a first step we focus on pronouns as features that are related to narrative perspective.

In absence of precise machine learning methods for now we rely on manually labelling a ground truth (in the “NLP sense” of labelled baseline data for computer analysis). If we want to develop a measure of narrative perspective we are forced to start small, modest, and we should progress with small steps keeping computational and hermeneutic evaluation tightly integrated, as we reason elsewhere (van Zundert and van Dalen-Oskam, 2019). Machine learning results often agree with human intuitions. However, it remains unclear whether the underlying mechanisms of machine learning are comparable with the human cognitive process. Insufficient understanding of the heuristics of machine learning or data bias may lead to poor explanations for mechanisms behind real world phenomena (for especially egregious examples cf. Coalition for Critical Technology, 2020 and Liberman, 2010). The issue of the human comprehensibility of methodology remains a topic of much debate in the field of Digital Humanities, one that we would like to contribute to by integrating machine learning and computational methodologies as mutual checks and balances.

Our proposal for a first measure is intentionally simple and straightforward, because we want to better understand the interpretative process in the human reader. Within this first step towards making perspective computationally measurable we focus on pronoun use. Pronouns are semantically and syntactically a more clear and unambiguous category than other phenomena related to perspective, such as dialogue and emotional valence. This makes pronouns a good baseline point of entry for both machine learning and human heuristic approaches to studying perspective, as others have also recognised (e.g. Andresen and Knorr, 2020). For that reason we choose to use the analysis of pronouns as a first step in both hermeneutically and computationally understanding the measurement of perspective in literary texts.
3 Method

We applied two approaches to our development of a measure to determine perspective in fiction computationally, so as to be able to thoroughly validate our results. The first measure is a machine learning approach, where we try to let the “data speak for itself” bottom up. The second approach is narratologically informed and based on computing the ratio of combinations of pronouns\(^1\).

Both methods use the same set of data of 1001 fragments of novel texts. Samples were taken from the novels from The Riddle of Literary Quality project corpus of 401 bestselling and most frequently borrowed novels in the Netherlands between 2007 and 2012. The samples were taken from across the entire Riddle corpus, although some novels contributed more samples than others. Samples were not chosen randomly but manually so that none contained dialogue, and were unambiguous consecutive examples of narrative text. Multiple fragments were chosen from novels that featured more than one narrator to reflect the narrative diversity of the corpus. Token length of samples varied around 250 tokens (minimum of 229, maximum of 314, with a mean of 258.11 words and standard deviation of 10.10). All samples were converted to lowercase and all punctuation was removed. A typical example of a text would look like the sample depicted in example 1.

\(^1\) Code for both approaches is open source (MIT license) and available in Github: \[https://github.com/jorisvanzundert/riddle_ikindex\]
het zoveelste rondje langs de enorme bouwput die de laatste maanden

zin uit zicht had bepaald

(Source: Joost Zwagerman (2010), Duel. Amsterdam, Antwerpen: De
Arbeiderspers.)

Example 1: Example of one of the full samples of Dutch-language literary text used,
without punctuation and all lowercase. (Pronouns in bold.)

The machine learning approach used a three layer feed forward convolution neural

network with a standard Keras Python implementation backed by Tensorflow. We

used a take-one-out approach to training and testing. Thus, for each sample we trained

the model on the entire set of samples leaving out that specific sample, after which

the model made a prediction, i.e. whether the tested sample was first or third person

perspective. Essentially this means that we apply a plain vanilla machine learning

binary classification approach to the problem of identifying first person and third

person narrative perspective.

The pronoun ratio based approach we started by using equation (1). This equation

computes the ratio between first-person pronoun singular “ik” (transl. “I”) and

third-person pronouns singular “hij” and “zij” (transl. “he”, “she”).

\[I = \frac{n_{ik}}{1 + n_{hij,zij}} \]

(1)

This basic formula worked well but we found through iterative testing that using

more pronouns would increase accuracy. Iterative evaluation also served to show that

reflexive pronouns (“zichzelf”, “haarzelf”, “onszelf”); transl. “himself”, “herself”, “our-

selves”) should not be counted as they are essentially redundant and therefore inflate

the “he”, “she”, and “we” count of the pronouns they refer to. Eventually we arrived

at the equation depicted as equation (2), or Van Rossum’s I-index. Van Rossum’s

I-index computes the ratio of pronouns associated with first person perspective to a

fuller set of pronouns found in a text, including second-person, plural, and possessive

pronouns. In this form the I-index resembles an approach presented by Jockers for

English (Jockers 2014). Apart from the obvious difference in language domain the

main difference with that method is in our use of all pronouns. Jockers’ method uses

first and third-person pronouns only. Jockers does not provide a formal validation,

but for the Dutch context the use of all pronouns yielded better results than using

selective pronouns (cf. section 4).

\[I = \frac{n(i,k,we,me,mijn[n],ons,onsje)}{1 + n(i,k,we,me,mijn[n],ons,onsje,hij,zij,ze,je,jou[w],haar,zijn,jullie)} \]

(2)

By sorting the labelled list of fragments from highest to lowest I-index several
categorisation errors came to the fore. Several of these were manual labelling mistakes

2 As a gesture of appreciation for her sound and creative contribution to developing this measure,
well beyond the baseline for any expected contribution of a master student to a research project, we have
chosen to name this equation “Van Rossum’s I-index”.

on part of the researcher where high I-indices were labelled as third person narratives. Other irregularities alerted us to the many pronominal forms that narrative perspective can take, such as Renate Dorrestein’s novel *De leesclub* (“The Book Club”), which is written from a first person plural, or the “we” perspective that the titular book club implies (see example [2]). We include full-length excerpts in this article because they illustrate how multifaceted narrative perspective is beyond the sentence level. The second excerpt, from *Mama Tandoori* for example, features both first-person possessive pronouns for focalization and third-person pronouns for description.

Daar zaten we dan. Na drie lange dagen op het eiland was de toestand onveranderd dezelfde. De schrijver, laten we er geen doekjes om winden, lag nog steeds voor pampus. Het regende en het regende. Op de schaarste momenten dat het droog was, joegen er dikke mistlarden langs de grijsche lucht. Het werd eb, het werd vloed. We leefden van zeewier, algen en een enkele kwal, door Johanna op de aangespoelde tweepitter bereid. Het was gezond en vitaminerijk voedsel, maar wel eenzijdig, al bracht Jo zoveel mogelijk variatie aan door de kelp beurtelings te koken, te bakken en te blancheren. Het gele mos, waar Tillie meteen al haar twijfels over had gehad, was keihard en oneetbaar gebleken. Verder groeide er op het hele eiland niets, zelfs geen distels. Gelukkig was bijna onze hele voorraad The Famous Grouse aangespoeld. Er waren maar een paar flessen op de rotsen gesneuveld. Ook van de Maizena waren diverse brokstukken aan land gekomen. In een afgebroken mast hadden we meteen op het hoogste punt van het eiland Leonies meest kleurrijke Marimekko gehesen. Met behulp van touw en zeil hadden we vervolgens een afdak in elkaar gezet, waaronder we onze kleren en onszelf konden drogen. Hadden we niet op een kale rots gezeten, dan waren we begonnen met de aanleg van een kleine moestuin, zoals bekend uit de literatuur. Robinson Crusoe, dat werk.

Wat we het meest misten, behalve een boek, was wc-papier. En Annabel betreurde het teloorgaan van haar pincet.

(Source: Renate Dorrestein (2010), *De leesclub*. Amsterdam, Antwerpen: Contact)

(Translation)

There we were. After three long days on the island, the situation remained unchanged. The writer, let’s not beat around the bush, was still out cold. It rained and it rained. On the rare occasions that it was dry, thick patches of fog swept across the gray sky. The tide ebbed and flowed. We lived on seaweed, algae and the occasional jellyfish, prepared by Johanna on the washed-up two-pitter. It was healthy and nutritious food, but it was monotonous, although Jo added as much variety as possible by alternately cooking, baking and blanching the kelp. The yellow moss, which Tillie had immediately felt unsure about, had turned out to be hard and inedible. Nothing else grew on the whole island, not even thistles. Fortunately, almost our entire supply of The Famous Grouse had washed up. Only a few bottles had broken on the rocks.

Various pieces of debris from the Maizena had also come ashore. On the highest point of the island we immediately hoisted Leonie’s most colorful Marimekko on a broken mast. With the help of rope and tarpaulin we then fashioned a shelter under which we
could dry our clothes and ourselves. Had we not been sitting on a bare rock, we would have started cultivating a small vegetable garden, a known literary trope. Robinson Crusoe, that business.

What we missed most, other than a book, was toilet paper. And Annabel mourned the demise of her tweezers.

(Source: Google translate with our own manual corrections.)

Example 2: Example of one of the full samples of Dutch-language literary text used, without punctuation and all lowercase. (Pronouns in bold.)

Another labelling discrepancy occurred with excerpts from Ernest van der Kwast’s novel Mama Tandoori, a novel in which the narrator uses overwhelmingly possessive pronouns to paint a loosely autobiographical portrait of his mother (see example 3).

Langzaam, heel langzaam, herstelt de patiënt zich, hervindt hij zijn krachten. Mijn moeder ziet het aan zijn ogen. Kleine rimpels in de ooghoeken, een schittering in het zwarte meer van zijn pupillen. De ogen van Rajesh Mudgal lachen. Op een ochtend gaat ze ernaar verlangen. Het is er ineens, het verlangen, en het is warm en bliksem snel, overal en nergens. Nog nooit is ze zo helder wakker geworden, alsof de zon van de nieuwe dag regelrecht in haar geest wordt uitgestort. Haar lichaam is van licht, haar vingertoppen tintelen.

Ze vraagt zich af wat Rajesh Mudgal voelt. Mijn moeder probeert zijn gezicht te lezen. Ze ziet groeven. Hoe langer ze kijkt, hoe meer lijnen ze ontdekt, plooien van pijn. In zijn voorhoofd, om zijnmond, tussen zijn wenkbrauwen. Ze wordt overvallen door medelijden. Mijn moeder pakt zijn hand vast, de hand met vijf stompjes als vingers. Ze knijpt er zachtjes in en het is alsof ze een vonk voelt. Van schrik laat ze de hand los. Opeens beseft ze de situatie. Zij is een verpleegster, hij is afkomstig van een rijke familie. Hij is invalide, zij is een vrouw in de kracht van haar leven.

(Source: Ernest van der Kwast (2011), Mama Tandoori. Amsterdam: Nijgh & Van Ditmar)

(Translation)

My mother drank tea with the patient’s mother. It was quiet; this was a house of sorrow. You could hear a tear drop. Then my mother was taken to the patient. She scrutinised
him, seeing his dark, gleaming hair, the perfectly straight parting: the hair of a film star. They didn’t exchange any words. My mother cleaned the captain’s wounds, changed his bandages, in silence. Rajesh Mudgal endured it all. He clenched his jaw, thinking of the sea: salty rain, waves as grey as elephants.

Slowly, very slowly, the patient improved, recovered his strength. My mother could tell by his eyes: new tiny wrinkles in the skin around their corners, a brilliance in the black lakes of his irises. Rajesh Mudgal’s eyes were smiling. One morning, she began to long for them. Suddenly it was there, the longing, and it was warm and quick as lightning, everywhere and nowhere at once. Never before had she woken with such clarity, as if the new day’s sun had been poured directly into her soul. Her body was made of light; her fingertips tingled.

She wondered what Rajesh Mudgal might be feeling. My mother tried to read his face. She saw furrows. The longer she looked, the more lines, the more creases of pain, she discovered: in his forehead, around his mouth, between his eyebrows. She was overcome by compassion. My mother took his hand, the hand with the five stumps for fingers. Squeezing it softly, she seemed to feel a spark. Startled, she dropped the hand. Suddenly, the situation dawned on her. She was a nurse; he was the scion of a wealthy family. He was an invalid; she was a woman in the prime of her life.

Example 3: Excerpt from Mama Tandoori. Words counted as pronouns into the index in bold. This text was manually labelled as first person perspective and recognised by an earlier version of the I-index as third person perspective. After fine-tuning, the I-index rightfully recognised it as first person. Note that we did not apply linguistic parsing but mere word form matching. This results in negligible amounts of false positives, such as the first “haar” in this sample, which actually means “hair” not “her”. This is a detail of parsing, it does not affect the properties of the I-index itself.

Both texts in example [2] and [3] feature a variation on a first person perspective, albeit in a different form than the initial version of the I-index accounted for which resulted in their mis-classification as third person perspective. We examined these outliers in our training material to expand the I-index into new descriptive directions, to also account for narrative perspective in its multiple personal pronouns and possessive pronoun forms. As such, we used the texts that resisted our initial method as input to refine the I-index.

4 Results

Both methods were tested and validated on 1001 selected full text fragments of Dutch fiction non-dialogue narrative that were labelled manually for first and third person perspective. Both measures were verified by leave-one-out testing, thus yielding 1001 observations each. We found that both approaches are highly effective in determining narrative perspective, yielding a F1 harmonic mean of 0.97 for the machine learning approach (figure [2]) and a perfect 1.00 score for the pronoun ratio approach (figure [1]).

Pictured in figure [1] are the results from the I-index’s classification of our corpus of 1001 narrative text excerpts. The swarm plot shows that the majority of entries labelled as third person narrative perspective (orange dots) is located at the lower end
of the spectrum with a score of zero being the most frequent, which is reassuring for a measure that takes first-person pronouns as a baseline. Texts labelled as first person perspective (blue dots) are expectedly feathered out over the higher scores on the I-index scale, in the graph appearing at the moment where texts are no longer labelled as third person narratives. The threshold rate sits at an I-index of 0.0833, indicated by the dotted line. The F1 curve visualises this predictive point of optimal certainty and shows that when that threshold would be shifted upwards in the first figure, it would result in more classification errors. The confusion matrix on the right-hand side shows the model’s error rate in prediction, which sits at zero for both our 346 first person and our 655 third person perspective texts, meaning that the model has made no mistakes in classifying the fragments according to our manual labelling of first and third person.

Figure 2 visualises the results from the predictive machine learning model to contrast our computational I-index method. For the machine learning model, the swarm plot points to less clear-cut distinction between texts classified as first person (blue dots) and those classified as third person perspective (orange dots). The overlap occurring at both sides of the dotted cut-off line points at the algorithm’s inaccuracies in the categorisation of texts. As such, the predictive model’s maximum certainty sits somewhat higher at a machine learning index of 0.2. The F1 curve indicates that the machine learning model is more consistently certain of a binary judgment than the
I-index, looking at the vertical lines sitting at both the 0,0 and 1,0 points on the x-axis, and that it is somewhat more confident than our computational measure, hovering on the higher end of the graph as opposed to the gradual downwards slope of the I-index model. The third error metric, however, confirms that despite this increased confidence, the algorithm has made more mistakes in classification; 15 excerpts that were manually labelled as first person perspective were incorrectly deemed to be third person narrative texts, and 9 excerpts that were manually labelled as third person perspective were faultily taken as first person perspective.

5 Discussion

As a first step in developing some baseline approaches to computationally describing narrative perspective present in text, the measures both yield perfect to near-perfect results. However, we prefer the pronoun ratio based approach above the machine learning one because it more clearly indicates and reveals the linguistic and narratological properties sought after and associated with the narratological inference. Additionally, we would like to underline the versatility and flexibility of this computational measure, as it can be simply adapted to expand the range of pronouns that it accounts for, as evidenced by our own refinement process, and it can be rearranged to accommodate different narratological foci — a third person index, for instance, or an index of plural perspective. Although of minor importance, it could also be noted that the statistics based method outperforms the machine learning method as to speed.

In a sense our approach is consciously naive because of our decision to establish a baseline measure, for which we have explained our reasons in the theory section. Obviously perspective in fiction is more complex than the dichotomy between first and third person view. See, for instance, Fludernik (1995) on unfamiliar pronominal strategies such as second-person pronouns of address and impersonal pronouns in experimental fiction. We purposefully designed this computational measure as an index to reflect our intention to approach literary perspective as a spectrum, rather than as a binary system. In its current form the index discriminates between first and third person perspective. But the index is designed in such a way that it is open to adaptation for multiple and eventually mixed narrative perspectives. This open design also creates the possibility of the index’s use for narratological shifts within the context of the full text of novels. This is part of our future work.

It must be noted that our measures have been tested on an unambiguous gold standard. We used narrativetext in the sense of text without quoted or directly implied dialogue. In unmediated fiction narrative which features, for instance, indirect free speech, it is not readily clear whom the narrative perspective is most closely associated with (either speaker or narrator) and how mixed perspective in such cases could and should be measured. Further validation should also be applied to ensure our sampling process and choices have not introduced bias. For instance, due to pragmatic reasons many samples were taken from the first parts of novels because that is where consecutive narrative text generally occurred more often than in later parts of the texts. It is arguable that narrative parts (i.e. non-dialogue) at the start of a novel are of a different length compared to such parts in the latter half of a story, while also their style may differ. Furthermore we should expand our evaluation to examine if the found cut off rates for predictions are stable over different corpora that are not as clearly a gold standard construction as applied in our current tests.

Another conscious naivety in our approach is the establishing of the harmonic mean.
Because both observations, predictions and labels were fully known in this case, we could simply compute the cut off value for predictions that would yield the highest F1 score. In unsupervised situations there is obviously no way to do this. Further experimentation should determine if these cut off values are both realistic and usable in different situations.

6 Conclusion

In this paper we have introduced two methods to automatically categorise the narrative perspective of a text sample as a point on the line between first person or third person perspective. We have focused on the novels in modern Dutch that were part of the corpus of The Riddle of Literary Quality project, on the one hand to eventually establish a possible link between narrative mode and pronoun use, and on the other, to explore whether narrative perspective in the most basic of computational definitions is one of the features playing a role in the perception of literary quality. The first of our two measures was a machine learning approach and the second was based on computing the ratio of combinations of pronouns. We have demonstrated that both approaches can predict narrative perspective with very high accuracy. Our fine-tuned calculation of pronoun ratio - which we named Van Rossum's I-index - even yielded a perfect score. Because the I-index is transparent and easy to modify to accommodate other perspectives we prefer this approach. In its current version, however, it is only an entry point explaining the socio textual significance of narrative perspective. We are working on follow-up research in which we will develop this first step into a more comprehensive method that will be very useful in stylometric research on large and diverse corpora of literary texts in Dutch. We expect our approach may also be useful in other languages with comparable and unambiguously determinable pronoun identifiers. The situation for languages with verb or noun inflexion to indicate pronouns, however, might require further adaptation.

References

Andresen, M. and D. Knorr

Bal, M.

Brunner, A.

Brunner, A.

2020. Detecting direct speech in multilingual collection of 19th century novels. In
Coalition for Critical Technology
2020. Abolish the #TechToPrisonPipeline: Crime prediction technology reproduces injustices and causes real harm.

Fludernik, M.

Herman, L. and B. Vervaeck

Jockers, M. L.
2014. Simple Point of View Detection.

Koolen, C., K. van Dalen-Oskam, A. van Cranenburgh, and E. Nagelhout

Koolen, C. W.
2018. Reading Beyond the Female: the relationship between perception of author gender and literary quality. Phd, University of Amsterdam, Amsterdam.

Liberman, M.
2010. More on "culturomics".

Mani, I. and G. Hirst, eds.

Piper, A.

Porter-Abbott, H.

van Cranenburgh, A.

van Cranenburgh, A., K. van Dalen-Oskam, and J. J. van Zundert

van Zundert, J. and K. van Dalen-Oskam